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The United States faces a formidable asymmetric threat from diverse, global terrorist organizations. 
Unlike well-defined adversary states in previous conflicts such as the Cold War, present-day terrorist 
organizations are extremely difficult to counter because of their sparse, distributed, and adaptive 
nature.1 They are typically organized in small covert cells designed to minimize the possibility of 
detection.2,3

Over the last several years, social network analysis and other graph-based technologies have 
been brought to bear on the problem of detecting covert terrorist networks.4,5,6,7,8 These efforts 
have yielded positive results, but the current sets of techniques and tools still have significant 
shortcomings. A considerable number of existing approaches cannot simultaneously:

 • Account for missing or erroneous data

 • Model dynamic changes in network structure

 • Model key flows and identify key players

In addition to the limitations noted above, many of the existing methods are too computationally 
expensive to be applied to the large, real-world data sets that must be analyzed in order to prevent 
terrorist attacks. In the TANGRAM proposal solicitation,9 the Air Force Research Laboratory 
noted that “guilt by association” methods often fall short without an initially known suspect, 
which is a crucial consideration in counter-terrorism efforts.
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We have developed a patent-pending technique that explicitly addresses the needs cited above. Our 
algorithms are currently embodied in the form of the Paragon Network Analysis (PNA) software. 
Our method is more robust to missing or erroneous data than earlier techniques, especially those 
based on traditional centrality measures10 or on subgroup connectivity.8 Those previous approaches 
can be very sensitive to the omission of even a few key links, or edges, in a network.11

Unlike many existing methods, the PNA algorithms directly incorporate time-dependent data 
about communication events in order to characterize the dynamical evolution of a network. The 
time ordering of events is used explicitly in our formalism. Our initial tests indicate that our 
algorithms can track the changes in a terrorist cell as it transitions from a covert “sleeper” state 
to an active state.6 Therefore, our software could aid the intelligence community by warning of 
impending attacks from covert cells going into action.

The PNA method employs a set of novel, dynamic network measures that can effectively identify 
covert terrorist cells and characterize their behavior over time. In this non-proprietary white paper, 
these parameters are referred to as a and b. Full details about the definitions of these new measures 
can be made available upon execution of an appropriate non-disclosure agreement. The PNA 
program uses several adjustable parameters, which can fine-tune the algorithm’s ability to detect 
patterns of mediated communications. One important advantage of our method is that it does not 
require any a priori information about which entities to track; no “guilt by association” assumption 
is necessary.

Our technique promises to be scalable to large networks. Unlike centrality-based approaches that 
typically must solve the computationally expensive “all pairs, shortest distance” problem,12 our 
method uses a purely local analysis that is highly parallelizable. Its basic computation time scales as 
O(n k2), where n is the number of nodes and k is the average degree for the network.  Moreover, our 
software can effectively analyze streaming communications or transaction data. Unlike a number 
of previous techniques that must recalculate quantities over the entire graph at each time interval, 
only new and updated nodes need to be analyzed in the streaming-data scenario.

Our approach does not require any message content to detect anomalous behavior that might be 
indicative of covert terrorist networks; records of who contacted whom and when are sufficient. 
However, if message content is available, it can be used to filter communication events by assessing 
message similarity. Other filtering conditions can also be applied. For example, one could limit 
the analysis to communication events involving at least one contact outside the United States or 
those involving one or more agents on a watch list of known or suspected terrorists. Such filtering 
conditions can be used in concert with the PNA tunable parameters to winnow initial sets of 
anomalies down to fewer cases that meet the conditions of one or more threat signatures. These 
tools serve to decrease the likelihood of false positives.
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We performed a number of tests using simulated communication events to test the PNA software’s 
ability to detect patterns of mediated communications associated with covert terrorist cells in a 
“sleeper” state. Figure 1 is a graph that displays one example of how different types of simulated 
social networks can be readily distinguished by their respective positions when plotted according 
to their values of a and b. The results in the graph are for networks13 of the following types, each 
consisting of 50 nodes:

 • Erdos and Rényi (ER) random graphs14 of 50 nodes with values of the uniform node linking 
probability ranging from 0.1 to 1.0

 • Small-world networks15 of 50 nodes with the rewiring probability ranging from 0.0 to 1.0

 • Small-world networks of 45 nodes and one covert cell of 5 nodes, including a single mediator 
node

 • Small-world networks of 40 nodes and two covert cells of 5 nodes, each including a single 
mediator node 

In the simulations noted above, all communications within each covert cell flow through that 
cell’s mediator node. Note that there is a clear separation between the “normal” networks without 
mediated communications and the networks containing covert terrorist cells that use mediated 
communications. The calculations for Figure 1 were for networks of 50 nodes. Our software has 
also successfully detected four covert cells that each consist of only 5 nodes and that are embedded 
in larger networks, up to 1,000,000 nodes in our initial tests, and with no appreciable degradation 
in detection ability.

p r o m i s i n g  i n i t i a l  
r e s e a r c h  r e s u l t s
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The results of Figure 1 reflect the average parameter values over the entire time period that spans 
all of the communication events analyzed. To assess our method’s ability to track the evolution 
of network communications patterns over time, we performed a second set of calculations in 
a sliding-time-window analysis. As input for these calculations, the event generator simulated 
communications within a covert cell that starts in a “sleeper” state with purely mediated 
communications, transitions to an active state with no mediation to prepare for an attack, and 
then switches back to the “sleeper” state.

Figure 1. Paragon Metrics a and b for Different Network Types
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Figures 2 and 3 display the results for the mode-switching simulations for four different realizations 
of the numerical experiment. Figures 2 and 3 show a and b as functions of time, respectively. For 
both of these network parameters, the transition from the “sleeper” state to the active state and 
back is clearly visible. Thus, an automated system that uses the PNA program could monitor covert 
cells and warn intelligence analysts when the cells begin to switch to active mode.

Figure 2. Paragon Metric a vs. Time for Networks of 45 Small-world Nodes and One Covert Cell

“Sleeper” State “Sleeper” StateActive State: 
Potential 

Attack

Pa
ra

go
n 

M
et

ri
c 

a

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Time

SW_n=45_CNA_1

SW_n=45_CNA_2

SW_n=45_CNA_3

SW_n=45_CNA_4

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Time

SW_n=45_CNA_1

SW_n=45_CNA_2

SW_n=45_CNA_3

SW_n=45_CNA_4

Figure 3. Paragon Metric b vs. Time for Networks of 45 Small-world Nodes and One Covert Cell
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Figures 4 and 5 relate to scalability tests in which four covert cells of five terrorists each were 
embedded in small-world networks consisting of 103, 104, 105, and 106 nodes. Each terrorist 
was also connected to the surrounding small-world network and communicated with four non-
terrorist neighbors with the same frequency as in the rest of the surrounding network. The largest 
calculation to date involved ~40M simulated communications.

Figure 5. False Positive Rates
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Figure 4. Leading Values of Paragon Metric a
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In all of these cases, the four leaders of the covert cells were clearly identified, as shown in Figure 4. 
Figure 5 shows the false positive rate (FPR)16 as a function of the threshold value of Paragon metric 
a above which a node would be classified as a terrorist. The FPR rapidly drops to 0, well before the 
values of a associated with the terrorist leaders. 

In order to check for the occurrence of false alarms on real-world communications data, we ran 
our software on the Reality Mining cell phone data set collected by Dr. Nathan Eagle at the MIT 
Media Lab.17 In that study, the cell phone calling patterns of 100 volunteers were recorded for a 
period of a little longer than one year. Throughout the anticipated range of one of the key tunable 
parameters, there were no false positives generated.

As noted above, the computation time of our analysis algorithm scales as O(n k2). Figure 6 displays 
the analysis time as a function of network size n, the number of nodes. These calculations were 
performed on an Apple MacBook Pro notebook computer with 2 GB of RAM and a 2.1-GHz 
Intel Core 2 Duo processor. 

Finally, our method is robust to the omission of even a relatively large percentage of captured 
network traffic. In one set of observability tests, the PNA software was able to identify the anomalous 
terrorist cells even when up to 90% of the full input data set was omitted. This characteristic is 
particularly advantageous because real-world data about covert networks must be assumed to be 
incomplete and uncertain.
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Figure 6. Analysis Time as a Function of Network Size
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The initial research results presented above demonstrate that our novel approach could be a valuable 
tool for the United States in its counter-terrorism efforts. We welcome the opportunity to hone 
our algorithms to meet the needs of the United States Government. We look forward to working 
with potential partners and contract sponsors to define one or more challenging research and 
development projects.

n e x t  s t e p s
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Dr. Steve Kramer is the President and Chief Scientist of Paragon Science, 
Inc. Drawing upon his research and consulting experience in the academic, 
business, and government fields, Dr. Kramer sets the research and business 
directions for the company. He founded Paragon Science with the goal of 
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A native of Los Alamos, New Mexico, he worked during six summers at Los Alamos National 
Laboratory in the Computing Division and the Applied Theoretical Physics Division. In May 1987, 
he graduated summa cum laude with a B.A. in physics and mathematics from Trinity University 
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Michael Marder in the Center for Nonlinear Dynamics at the University of Texas at Austin, he 
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solutions of nonlinear partial differential equations; and visualization of three-dimensional, time-
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From 1993 to 1997, he worked under Dr. Paul Rudolf at Forward Vision in San Antonio, Texas. 
During multiple SBIR contracts for the United States Air Force, Dr. Kramer performed research 
in computational electromagnetics; computer simulations of imaging systems and optical scanning 
devices; and numerical calculations of wave propagation applied to radar cross sections, inverse 
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From 1997 to 2001, Dr. Kramer worked in the e-commerce software industry. As Vice President 
of Education at Trilogy Software, he led a team of 25 people and oversaw a $1.3M annual 
budget to deliver technical training and technical documentation to external clients and internal 
employees. Following his years at Trilogy, he served as Manager of Educational Services at Motive 
Communications, another software company.

In 2002, combining his business and scientific knowledge, he began working to commercialize a 
new pattern recognition technology that Dr. Rudolf had invented. Since 2004, Dr. Kramer has also 
acted as a consultant to five Austin software companies. In 2005, he started his current research in 
graph theory, network analysis, and complex systems theory, yielding Paragon’s counter-terrorism 
technology.
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